Autoregressiver gleitender Durchschnitt In der Statistik. Autoregressive gleitende Durchschnitt (ARMA) Modelle. Manchmal auch Box-Jenkins-Modelle nach George Box und G. M. Jenkins. Werden typischerweise auf Zeitreihendaten angewendet. Bei einer Zeitreihe von Daten Xt. Ist das ARMA-Modell ein Werkzeug, um die zukünftigen Werte in dieser Serie zu verstehen und zu prognostizieren. Das Modell besteht aus zwei Teilen, einem autoregressiven (AR) Teil und einem gleitenden Durchschnitt (MA) Teil. Das Modell wird gewöhnlich als das ARMA (p, q) - Modell bezeichnet, wobei p die Ordnung des autoregressiven Teils und q die Ordnung des gleitenden Mittelteils (wie nachstehend definiert) ist. Autoregressives Modell Edit Die Notation AR (p) bezieht sich auf das autoregressive Modell der Ordnung p. Das AR (p) - Modell wird geschrieben Ein autoregressives Modell ist im wesentlichen ein unendlicher Impulsantwortfilter mit einer zusätzlichen Interpretation, die auf ihn gelegt wird. Einige Einschränkungen sind auf den Werten der Parameter dieses Modells notwendig, damit das Modell stationär bleibt. Beispielsweise sind Prozesse im AR (1) - Modell mit 1 gt 1 nicht stationär. Beispiel: Ein AR (1) - Prozess-Edit Ein AR (1) - Prozess ist gegeben durch Es ist ersichtlich, dass die Autokovarianz-Funktion mit einer Abklingzeit von zerfällt. Die spektrale Dichtefunktion ist die inverse Fourier-Transformation der Autokovarianz-Funktion. In diskreter Form ist dies die zeitdiskrete inverse Fourier-Transformation, die ein Lorentz-Profil für die spektrale Dichte ergibt: Berechnung der AR-Parameter Das AR (p) - Modell ist durch die Gleichung gegeben. Da der letzte Teil der Gleichung nicht ist - null, wenn m 0 ist, wird die Gleichung üblicherweise gelöst, indem man sie als Matrix für m gt 0 repräsentiert und erhält so Gleichung Ableitung Bearbeiten Die Gleichung, die den AR-Prozeß definiert, multipliziert beide Seiten mit Xtm und nimmt Erwartungswertausbeuten, die das Yule ergeben - Walker-Gleichungen: Bewegtes Durchschnittsmodell Bearbeiten Die Schreibweise MA (q) bezieht sich auf das gleitende Durchschnittsmodell der Ordnung q. Wo die 1. Q sind die Parameter des Modells und der t. T-1. Sind wieder die Fehlerterme. Das gleitende Durchschnittsmodell ist im Wesentlichen ein endlicher Impulsantwortfilter mit einer zusätzlichen Interpretation. Autoregressives gleitendes Durchschnittsmodell Bearbeiten Die Notation ARMA (p. Q) bezieht sich auf das Modell mit p autoregressiven Terme und q gleitenden Durchschnittstermen. Dieses Modell enthält die Modelle AR (p) und MA (q), Anmerkung zu den Fehlertermen Bearbeiten N (0, 2) wobei 2 die Varianz ist. Diese Annahmen können geschwächt werden, aber dies wird die Eigenschaften des Modells ändern. Insbesondere eine Änderung der i. i.d. Annahme würde einen ziemlich grundlegenden Unterschied machen. Spezifikation in Bezug auf den Lag-Operator In einigen Texten werden die Modelle in Bezug auf den Lag-Operator L spezifiziert. In diesem Fall ist das AR (p) - Modell gegeben durch wobei das Polynom repräsentiert ist. Das MA (q) - Modell ist gegeben durch wobei das Polynom repräsentiert Schließlich wird das kombinierte ARMA-Modell (p. q) ARMA-Modelle im Allgemeinen können nach Auswahl von p und q durch kleinste Fehlerquadrate angepasst werden, um die Werte der Parameter zu finden, die den Fehlertermin minimieren. Es wird allgemein als gute Praxis angesehen, die kleinsten Werte von p und q zu finden, die eine annehmbare Anpassung an die Daten liefern. Für ein reines AR-Modell können die Yule-Walker-Gleichungen verwendet werden, um eine Anpassung bereitzustellen. Verallgemeinerungen Bearbeiten Die Abhängigkeit von X t von vergangenen Werten und den Fehlertermen t wird als linear angenommen, sofern nicht anders angegeben. Wenn die Abhängigkeit nichtlinear ist, wird das Modell spezifisch als nichtlineares gleitendes Mittel (NMA), nichtlineares autoregressives (NAR) oder nichtlineares autoregressives gleitendes Durchschnittsmodell (NARMA) bezeichnet. Autoregressive gleitende Durchschnittsmodelle können auf andere Weise verallgemeinert werden. Siehe auch autoregressive Conditional Heteroskedasticity (ARCH) Modelle und autoregressive integrierte Moving Average (ARIMA) Modelle. Wenn mehrere Zeitreihen montiert werden sollen, kann ein vektorisiertes ARIMA (oder VARIMA) Modell eingebaut werden. Wenn die fraglichen Zeitreihen langes Gedächtnis aufweisen, dann ist fraktioniertes ARIMA (FARIMA, manchmal auch als ARFIMA bezeichnet) Modellierung geeignet. Wenn die Daten saisonale Effekte enthalten, kann sie durch ein SARIMA-Modell (saisonales ARIMA) modelliert werden. Eine weitere Verallgemeinerung ist das multiskalige autoregressive (MAR) Modell. Ein MAR-Modell wird durch die Knoten eines Baums indexiert, während ein autoregressives Standardmodell (diskrete Zeit) durch Ganzzahlen indiziert wird. Siehe multiscale autoregressive Modell für eine Liste von Referenzen. Siehe auch Edit References Edit George Box und F. M. Jenkins. Zeitreihenanalyse: Prognose und Kontrolle. zweite Ausgabe. (L) ist ein rationales, unendlich langsames LAG-Operator-Polynom, (1 x03C8 1 L x03C8 2 L 2 x 2026) . Anmerkung: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr LandAutoregressives gleitendes Durchschnittsmodell: Wikis Die Notation AR (p) bezieht sich auf das autoregressive Modell der Ordnung p. Das AR (p) - Modell wird geschrieben Ein autoregressives Modell ist im Wesentlichen ein allpoliger unendlicher Impulsantwortfilter mit einer zusätzlichen Interpretation, die auf ihn gelegt wird. Einige Einschränkungen sind auf den Werten der Parameter dieses Modells notwendig, damit das Modell stationär bleibt. Beispielsweise sind Prozesse im AR (1) - Modell mit 1 1 nicht stationär. Bewegliches Durchschnittsmodell Die Notation MA (q) bezieht sich auf das gleitende Durchschnittsmodell der Ordnung q: Autoregressives gleitendes Durchschnittsmodell Die Notation ARMA bezieht sich auf das Modell mit p autoregressiven Terme und q gleitenden Durchschnittstermen. Dieses Modell enthält die Modelle AR (p) und MA (q), Anmerkung zu den Fehlertermen N (0, 2) wobei 2 die Varianz ist. Diese Annahmen können geschwächt werden, aber dies wird die Eigenschaften des Modells ändern. Insbesondere eine Änderung der i. i.d. Annahme würde einen ziemlich grundlegenden Unterschied machen. Spezifikation in Bezug auf den Lag-Operator In einigen Texten werden die Modelle in Bezug auf den Lag-Operator L spezifiziert. In diesem Fall ist das AR (p) - Modell gegeben durch wobei das Polynom repräsentiert wird. Das MA (q) - Modell ist gegeben durch wobei das Polynom repräsentiert Schließlich wird das kombinierte ARMA-Modell (p. Q) durch eine präzisere alternative Notation gegeben Einige Autoren, einschließlich Box, Jenkins amp Reinsel (1994) verwenden eine andere Konvention für die Autoregressionskoeffizienten. Dies ermöglicht es, dass alle Polynome, die den Lag-Operator involvieren, in einer ähnlichen Form überall auftreten. Somit würde das ARMA-Modell als Anpassungsmodelle geschrieben. ARMA-Modelle können im allgemeinen nach Auswahl von p und q durch kleinste Fehlerquadrate angepaßt werden, um die Werte der Parameter zu finden, die den Fehlertermin minimieren. Es wird allgemein als gute Praxis angesehen, die kleinsten Werte von p und q zu finden, die eine annehmbare Anpassung an die Daten liefern. Für ein reines AR-Modell können die Yule-Walker-Gleichungen verwendet werden, um einen Fit bereitzustellen. Das Finden der geeigneten Werte von p und q im ARMA (p, q) - Modell kann erleichtert werden, indem die partiellen Autokorrelationsfunktionen für eine Schätzung von p aufgetragen werden. Und ebenfalls die Autokorrelationsfunktionen für eine Schätzung von q verwenden. Weitere Informationen können durch Betrachtung der gleichen Funktionen für die Residuen eines Modells mit einer anfänglichen Auswahl von p und q betrachtet werden. Implementierungen in Statistikpaketen In R. das tseries-Paket enthält eine Arma-Funktion. Die Funktion ist in Fit ARMA Models in der Zeitreihe dokumentiert. MATLAB enthält eine Funktion ar, um AR-Modelle zu schätzen, siehe hier für weitere Details. IMSL Numerical Libraries sind Bibliotheken der numerischen Analysefunktionalität, einschließlich ARMA - und ARIMA-Prozeduren, die in Standard-Programmiersprachen wie C, Java, C. NET und Fortran implementiert werden. Gretl kann auch ARMA-Modelle abschätzen, siehe hier, wo seine erwähnt. GNU Octave kann AR-Modelle anhand von Funktionen des Extrapakets Oktave-Forge abschätzen. Anwendungen ARMA ist geeignet, wenn ein System eine Funktion einer Reihe von nicht beobachteten Schocks (MA-Teil) sowie sein eigenes Verhalten ist. Beispielsweise können Aktienkurse durch fundamentale Informationen erschüttert werden und technische Trend - und Mittelwert-Reversionseffekte durch Marktteilnehmer aufweisen. Verallgemeinerungen Die Abhängigkeit von X t von vergangenen Werten und den Fehlertermen t wird linear angenommen, wenn nicht anders angegeben. Wenn die Abhängigkeit nichtlinear ist, wird das Modell spezifisch als nichtlineares gleitendes Mittel (NMA), nichtlineares autoregressives (NAR) oder nichtlineares autoregressives gleitendes Durchschnittsmodell (NARMA) bezeichnet. Autoregressive gleitende Durchschnittsmodelle können auf andere Weise verallgemeinert werden. Siehe auch autoregressive Conditional Heteroskedasticity (ARCH) Modelle und autoregressive integrierte Moving Average (ARIMA) Modelle. Wenn mehrere Zeitreihen montiert werden sollen, kann ein ARIMA-Modell (oder VARIMA-Modell) eingebaut werden. Wenn die in Frage stehenden Zeitreihen langes Gedächtnis aufweisen, kann die gebrochene ARIMA (FARIMA, manchmal auch als ARFIMA bezeichnet) Modellierung geeignet sein: siehe Autoregressive fractionally integrierten gleitenden Durchschnitt. Wenn die Daten saisonale Effekte enthalten, kann sie durch eine SARIMA (saisonale ARIMA) oder ein periodisches ARMA-Modell modelliert werden. Eine weitere Verallgemeinerung ist das multiskalige autoregressive (MAR) Modell. Ein MAR-Modell wird durch die Knoten eines Baums indexiert, während ein autoregressives Standardmodell (diskrete Zeit) durch Ganzzahlen indiziert wird. Siehe multiscale autoregressive Modell für eine Liste von Referenzen. Beachten Sie, dass das ARMA-Modell ein univariates Modell ist. Erweiterungen für den multivariaten Fall sind die Vector Autoregression (VAR) und Vector Autoregression Moving-Average (VARMA). Autoregressives gleitendes Durchschnittsmodell mit exogenem Eingabemodell (ARMAX-Modell) Die Notation ARMAX (p. Q. B) bezieht sich auf das Modell mit p autoregressiven Terme, q gleitenden Durchschnittstermen und b exogenen Eingaben. Dieses Modell enthält die Modelle AR (p) und MA (q) sowie eine lineare Kombination der letzten b Ausdrücke einer bekannten und externen Zeitreihe d t. Es ist gegeben durch: Einige nichtlineare Varianten von Modellen mit exogenen Variablen wurden definiert: siehe zum Beispiel nichtlineares autoregressives exogenes Modell. Statistische Pakete implementieren das ARMAX-Modell durch den Einsatz exogener oder unabhängiger Variablen. Referenzen George Box. Gwilym M. Jenkins. Und Gregory C. Reinsel. Zeitreihenanalyse: Prognose und Kontrolle. dritte Edition. Prentice-Hall, 1994. Mühlen, Terence C. Zeitreihen-Techniken für Ökonomen. Cambridge University Press, 1990. Percival, Donald B. und Andrew T. Walden. Spektralanalyse für physikalische Anwendungen. Cambridge University Press, 1993. Pandit, Sudhakar M. und Wu, Shien-Ming. Zeitreihen und Systemanalyse mit Anwendungen. John Wiley amp Sons, Inc. 1983.
No comments:
Post a Comment