OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir nicht fraktionierte Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat vorher, dass also der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den Monat 13 ist daher 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: 3 Verstehen von Prognoseebenen und Methoden Sie können sowohl Detailprognosen (Einzelposten) als auch Zusammenfassung (Produktlinie) erzeugen ), Die das Produktbedarfsmuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit Hilfe von 12 Prognosemethoden zu berechnen. Die Prognosen umfassen Detailinformationen auf Positionsebene und übergeordnete Informationen über eine Branche oder das Unternehmen als Ganzes. 3.1 Kriterien für die Bewertung der Projektergebnisse Abhängig von der Auswahl der Verarbeitungsoptionen und der Trends und Muster in den Verkaufsdaten sind einige Prognosemethoden für einen bestimmten historischen Datensatz besser als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie können feststellen, dass eine Prognosemethode, die gute Ergebnisse in einem Stadium eines Produktlebenszyklus bereitstellt, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Diese beiden Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem die ausgewählten Prognosemethoden auf die Vergangenheit des Bestellverlaufs angewendet und die Prognosesimulation mit dem aktuellen Verlauf verglichen werden. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die Ist-Bestellvorgänge mit den Prognosen für einen bestimmten Zeitraum und berechnet, wie genau die einzelnen Prognosemethoden den Umsatz prognostizieren. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik veranschaulicht die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Sequenz von Schritten, um die beste Anpassung zu ermitteln: Verwenden Sie jede angegebene Methode, um eine Prognose für die Halteperiode zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe mit den simulierten Prognosen für die Halteperiode. Berechnen Sie die POA oder die MAD, um zu bestimmen, welche Prognosemethode am ehesten mit den bisherigen tatsächlichen Umsätzen übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den Verarbeitungsoptionen, die Sie auswählen. Empfehlen Sie eine Best-Fit-Prognose durch die POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten zu Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management nutzt 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode die beste Prognosesituation bietet. Dieser Abschnitt behandelt: Methode 1: Prozent über dem letzten Jahr. Methode 2: Berechnet Prozent über Letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Gleitender Durchschnitt. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter gleitender Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend - und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Prognosegenerierungsprogramm (R34650) verwenden möchten. Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel können Sie das Gewicht, das auf die jüngsten historischen Daten oder den Zeitraum der historischen Daten, die in den Berechnungen verwendet wird, platziert werden. Die Beispiele in dem Leitfaden zeigen die Berechnungsprozedur für jede der verfügbaren Prognosemethoden an, wenn ein identischer Satz von historischen Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden einen Teil oder alle dieser Datensätze, die historische Daten der letzten zwei Jahre sind. Die Prognose geht ins nächste Jahr. Diese Verkäufe Geschichte Daten ist stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Veralterung nähern könnte. 3.2.1 Methode 1: Prozentsatz über letztem Jahr Diese Methode verwendet die Prozentsatz über letztes Jahr Formel, um jede Prognoseperiode mit der angegebenen prozentualen Erhöhung oder Abnahme zu multiplizieren. Zur Prognose der Nachfrage, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Umsatz Geschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Produkten mit Wachstum oder Rückgang prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozentsatz über letztes Jahr Die Formel "Prozent über letztes Jahr" multipliziert die Umsatzdaten des Vorjahres mit einem Faktor, den Sie angeben, und dann Projekte, die sich über das nächste Jahr ergeben. Diese Methode kann in der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren, oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognose Spezifikationen: Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die Verkaufsverlaufsdaten der letzten Jahre um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Übereinstimmung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Februarprognose entspricht 117 mal 1,1 128,7 gerundet auf 129. Die Märzprognose entspricht 115 mal 1,1 126,5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztem Jahr Diese Methode verwendet den berechneten Prozentsatz Letztes Jahr Formel, um die vergangenen Verkäufe der angegebenen Perioden mit Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System ermittelt einen prozentualen Anstieg oder Abfall und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu bestimmen. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden der Kundenauftragshistorie plus einem Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die kurzfristige Nachfrage nach Saisonartikeln mit Wachstum oder Rückgang prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über Letztes Jahr Die Formel des berechneten Prozentsatzes über dem letzten Jahr multipliziert Umsatzdaten des Vorjahres mit einem Faktor, der vom System berechnet wird, und dann projiziert er das Ergebnis für das nächste Jahr. Diese Methode könnte bei der Projektion der Auswirkungen der Ausweitung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr nützlich sein, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist. Prognose Spezifikationen: Bereich der Umsatzgeschichte für die Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte der letzten vier Perioden mit denselben vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist die Vorgeschichte, die bei der Prognoseberechnung verwendet wird: n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr in diesem Jahr Diese Methode wird verwendet Letzten Jahren Umsatz für die nächsten Jahre Prognose. Um die Nachfrage prognostizieren zu können, erfordert diese Methode die Anzahl der Perioden, die am besten geeignet sind, plus einem Jahr der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Die Formel "Letztes Jahr in diesem Jahr" kopiert die Verkaufsdaten des Vorjahres bis zum nächsten Jahr. Diese Methode könnte in der Budgetierung nützlich sein, um Verkäufe auf dem gegenwärtigen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber ein erhebliches saisonales Nachfrage-Muster könnte existieren. Vorhersagevorgaben: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognose Berechnung verwendet: Januar-Prognose entspricht Januar des letzten Jahres mit einem Prognosewert von 128. Februar-Prognose entspricht Februar des letzten Jahres mit einem Prognosewert von 117. März-Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um die nächste Periode zu projizieren. Sie sollten es häufig neu berechnen (monatlich oder mindestens vierteljährlich), um den sich ändernden Bedarf zu reflektieren. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach reifen Produkten ohne Trend prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um eine Projektion kurzfristig zu bestimmen. Die MA-Prognosemethode bleibt hinter Trends zurück. Forecast Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend-oder saisonale Muster. Diese Methode funktioniert besser für Kurzstrecken-Prognosen von reifen Produkten als für Produkte, die in den Wachstums-oder Obsoleszenz Stufen des Lebenszyklus sind. Prognosespezifikationen: n entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Höhe des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatzniveau zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. Märzprognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die Formel zur linearen Approximation, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend zur Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Änderungen in Trends zu erkennen. Diese Methode erfordert die Anzahl der Perioden der besten Übereinstimmung plus die Anzahl der angegebenen Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit konstanten positiven oder negativen Trends, die nicht aufgrund von saisonalen Schwankungen sind prognostiziert werden. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Verkaufsverlaufsdatenpunkten basiert. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, weil Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosespezifikationen: n entspricht dem Datenpunkt in der Verkaufsgeschichte, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie beispielsweise n 4 an, um die Differenz zwischen Dezember (jüngste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderlicher Umsatzverlauf: n plus 1 plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1-mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (2-mal 2) 141. März-Prognose Dezember des vergangenen Jahres 1 (Trend) entspricht 137 (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Methode der Least Squares Regression (LSR) leitet eine Gleichung ab, die eine lineare Beziehung zwischen den historischen Verkaufsdaten beschreibt Und der Lauf der Zeit. LSR paßt auf eine Zeile zum ausgewählten Datenbereich, so daß die Summe der Quadrate der Differenzen zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus der angegebenen Anzahl von historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten ist. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode, um einen linearen Trend in historischen Verkaufsdaten zu identifizieren. Das Verfahren berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X für Zeit steht. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt Funktion Verschiebungen in der Nachfrage. Die lineare Regression passt auf eine gerade Linie zu den Daten, selbst wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn Verkaufsgeschichte-Daten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten Vorhersage-Bias und systematische Fehler auf. Prognosespezifikationen: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie beispielsweise n 4 an, um die Historie von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde ein grßeres n (wie beispielsweise n 24) gewöhnlich verwendet werden. LSR definiert eine Zeile für so wenige wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderlicher Umsatzverlauf: n Perioden plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Märzprognose entspricht 119,5 (7 mal 2,3) 135,6 auf 136 gerundet. 3.2.7 Methode 7: Zweite Grad Approximation Um die Prognose zu projizieren, verwendet diese Methode die Zweite Grad-Approximationsformel, um eine Kurve darzustellen Die auf der Anzahl der Verkaufsphasen beruht. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus die Anzahl der Perioden der Verkaufsauftragsverlauf mal drei. Diese Methode ist nicht geeignet, die Nachfrage nach einem langfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich, aber dieses Verfahren bestimmt Werte für a, b und c in dieser Prognose Formel: Y a b X c X 2 Das Ziel dieses Verfahrens ist es, eine Kurve auf die Verkaufsgeschichte Daten passen. Dieses Verfahren ist nützlich, wenn sich ein Produkt im Übergang zwischen den Lebenszyklusstufen befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, könnte sich die Absatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig nutzbar. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n die Anzahl der Zeitperioden an, die in jedem der drei Punkte akkumuliert werden sollen. In diesem Beispiel ist n 3. Die tatsächlichen Verkaufsdaten für April bis Juni sind in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passform) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), die 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht 140 129 entspricht Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 stellt die gesamten historischen Verkäufe für April, Mai und Juni dar und ist auf X 1 Q2 dargestellt, entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 repräsentiert Januar bis März. Diese Grafik illustriert die Darstellung von Q1, Q2, Q3 und Q4 für die Näherung des zweiten Grades: Abbildung 3-2 Darstellung von Q1, Q2, Q3 und Q4 zur Näherung des zweiten Grades Drei Gleichungen beschreiben die drei Punkte des Graphen: (1) Q1 (Q2 a 2b 4c) (3) Q3 a bX cX 2 mit X 3 (Q3 a 3b 9c) Lösen Sie die drei Gleichungen gleichzeitig (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie die Gleichung 1 (1) aus Gleichung 2 (2) und lösen Sie für b: B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließe diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash ein (Q2 ndash Q2) 2 Das zweite Approximationsverfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ) (N3) n0 (n3) n0 (n2) n0 (n3) n0 (n) n (n) 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Näherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 auf 57 pro Periode gerundet. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose ist 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, Letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Mit dieser Methode können Sie die bestmögliche Anzahl von Perioden des Verkaufsauftragsverlaufs auswählen, die n Monate vor dem Startdatum der Prognose beginnt Wenden Sie einen prozentualen Anstieg oder Abnahme Multiplikationsfaktor, mit dem die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über dem letzten Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, erfordert diese Methode Perioden am besten geeignet plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend vorherzusagen. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Methoden multiplizieren Verkaufsdaten aus einem früheren Zeitraum mit einem von Ihnen angegebenen Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Sie können auch die Flexible Methode verwenden, um einen anderen Zeitraum als denselben Zeitraum des letzten Jahres anzugeben, der als Grundlage für die Berechnungen verwendet werden soll. Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsverlaufsdaten um 10 Prozent zu erhöhen. Basiszeitraum. Zum Beispiel bewirkt n 4, dass die erste Prognose im September des letzten Jahres auf Verkaufsdaten basiert. Mindestens erforderliche Verkaufsgeschichte: Anzahl der Perioden bis zur Basisperiode plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). 3.2.9 Methode 9: Gewichteter gleitender Durchschnitt Die gewichtete gleitende Durchschnittsformel ist vergleichbar mit Methode 4, Gleitende Durchschnittsformel, da sie im Vergleich zum vorausgegangenen Geschäftsverlauf die vorhergehende Verkaufshistorie projiziert. Mit dieser Formel können Sie jedoch Gewichte für jede der vorherigen Perioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden, die am besten zu den Daten passen. Ähnlich wie bei Moving Average, liegt diese Methode hinter den Nachfrage-Trends, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu prognostizieren, die relativ hoch ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ähnelt Methode 4, Gleitender Durchschnitt (MA). Sie können jedoch den historischen Daten bei Verwendung von WMA ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurzfristige kommen. Jüngere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass WMA ist besser auf Veränderungen in der Ebene des Umsatzes. Allerdings Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trends oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Veränderungen im Absatzniveau zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie 3) schneller auf Verschiebungen des Umsatzniveaus, doch könnte die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden bis includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugeordneten Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, weisen Sie Gewichte von 0,50, 0,25, 0,15 und 0,10 zu, wobei die jüngsten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Die Januarprognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 auf 128 gerundet (119 mal 0,10) (128 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 abgerundet auf 128. März-Vorhersage entspricht 119 mal 0,10 (137 mal 0,15) (128 mal 0,25) 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der bisherigen Verkaufsdaten. Bei dieser Methode wird die Anzahl der Perioden der Kundenauftragshistorie (von 1 bis 12) verwendet, die in der Bearbeitungsoption angegeben ist. Das System verwendet eine mathematische Progression, um Daten im Bereich von dem ersten (am wenigsten Gewicht) bis zum letzten Gewicht (das meiste Gewicht) zu wiegen. Das System projiziert diese Informationen zu jeder Periode in der Prognose. Diese Methode benötigt für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die jeweils am besten passende Monatshälfte plus den Kundenauftragshistorie. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trend-oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Basis für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte den historischen Daten, die linear abnehmen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.11 Methode 11: Exponentialglättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert Umsatzdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus die Anzahl der angegebenen historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten vorhanden ist. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In Linear Smoothing weist das System Gewichte auf, die linear auf die historischen Daten zurückgehen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. Die Prognose für die exponentielle Glättungsprognose ist: Prognose alpha (vorherige Ist-Umsatz) (1 ndashalpha) Alpha ist das Gewicht, das auf die tatsächlichen Verkäufe für den vorherigen Zeitraum angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für den vorherigen Zeitraum angewendet wird. Werte für Alpha reichen von 0 bis 1 und fallen üblicherweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuweisen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Grße der Verkäufe zu berechnen. Werte für den Alphabereich von 0 bis 1. n entspricht dem Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Im Allgemeinen reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.12 Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus zwei Jahre der Umsatzdaten und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Betafaktor eingeben oder das System berechnen lassen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größenordnung des Umsatzes (alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode ähnelt Methode 11, Exponentialglättung, indem ein geglätteter Mittelwert berechnet wird. Das Verfahren 12 enthält jedoch auch einen Ausdruck in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst wird. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Alpha entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Werte für Alpha reichen von 0 bis 1. Beta entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und beta sind voneinander unabhängig. Sie müssen nicht auf 1,0 Summe. Mindestens erforderlicher Umsatzverlauf: Ein Jahr plus Anzahl der Zeiträume, die zur Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). Wenn zwei oder mehr Jahre historischer Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei Exponential-Glättungsgleichungen und einen einfachen Mittelwert, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher mittlerer saisonaler Index Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T die aktuelle Zeitspanne ist. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. In dieser Tabelle wird der Verlauf der Prognoseberechnung aufgelistet: Dieser Abschnitt bietet einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um so viele wie 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode kann eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt verwenden. Das System wertet automatisch die Leistung für jede von Ihnen ausgewählte Prognosemethode und für jedes von Ihnen prognostizierte Produkt aus. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Diese beiden Leistungsbewertungsverfahren erfordern für einen von Ihnen festgelegten Zeitraum tatsächliche Umsatzverlaufsdaten. Der Zeitraum der jüngsten Geschichte für die Auswertung verwendet wird als eine Übergangszeit oder Periode der besten Passform. Um die Performance einer Prognosemethode zu messen, verwendet das System die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Stellt einen Vergleich zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum her. Wenn Sie mehrere Prognosemethoden auswählen, tritt dieser Prozess für jede Methode auf. Mehrere Prognosen werden für die Halteperiode berechnet und im Vergleich zu der bekannten Verkaufsgeschichte für den gleichen Zeitraum. Für die Verwendung in den Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. Diese Empfehlung ist spezifisch für jedes Produkt und kann sich jedes Mal ändern, wenn Sie eine Prognose generieren. 3.3.1 Mittlere Absolutabweichung Die mittlere Absolutabweichung (MAD) ist der Mittelwert (oder Mittelwert) der Absolutwerte (oder Größen) der Abweichungen (oder Fehler) zwischen Ist - und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler bei einer Prognosemethode und einem Datenverlauf. Da bei der Berechnung absolute Werte verwendet werden, werden positive Fehler nicht negativ ausgewertet. Beim Vergleich mehrerer Prognosemethoden ist derjenige mit dem kleinsten MAD der zuverlässigste für dieses Produkt für diesen Haltezeitraum. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, existiert eine einfache mathematische Beziehung zwischen MAD und zwei anderen gemeinsamen Verteilungsmaßstäben, bei denen es sich um Standardabweichung und Mean Squared Error handelt. Beispiel: MAD (Sigma (Actual) ndash (Prognose)) n Standardabweichung, (sigma) cong 1.25 MAD Mean Squared Fehler cong ndashsigma2 Dieses Beispiel zeigt die Berechnung von MAD für zwei der Prognosemethoden an. In diesem Beispiel wird davon ausgegangen, dass Sie in der Verarbeitungsoption angegeben haben, dass die Halteperiodenlänge (Perioden der besten Übereinstimmung) fünf Perioden entspricht. 3.3.1.1 Methode 1: Letztes Jahr zu diesem Jahr Diese Tabelle ist Geschichte, die bei der Berechnung von MAD verwendet wird. Perioden von Best Fit 5: Mittlere absolute Abweichung ist gleich (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Vorräte an und die Lagerhaltungskosten steigen. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In Services ist die Größenordnung der Prognosefehler in der Regel wichtiger als die prognostizierte Bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Time Series Methods Time series methods are statistical techniques that make use of historical data accumulated over a period of time. Zeitreihen-Methoden gehen davon aus, dass das, was in der Vergangenheit aufgetreten ist, auch in Zukunft vorkommt. Wie der Name der Zeitreihe andeutet, beziehen diese Methoden die Prognose nur auf einen Faktor - Zeitpunkt. Dazu gehören der gleitende Durchschnitt, die exponentielle Glättung und die lineare Trendlinie, und sie gehören zu den beliebtesten Methoden für die kurzfristige Prognose von Service - und Produktionsunternehmen. Diese Methoden gehen davon aus, dass sich identifizierbare historische Muster oder Trends für die Nachfrage im Laufe der Zeit wiederholen werden. Moving Average Eine Zeitreihenprognose kann so einfach sein wie die Nachfrage in der aktuellen Periode, um die Nachfrage in der nächsten Periode vorherzusagen. Dies wird manchmal als naive oder intuitive Prognose bezeichnet. 4 Wenn die Nachfrage zum Beispiel 100 Einheiten in dieser Woche beträgt, beträgt die Prognose für die nächste Wochen-Nachfrage 100 Einheiten, wenn die Nachfrage zu 90 Einheiten stattdessen ausfällt, dann sind die folgenden Wochen die Nachfrage 90 Einheiten und so weiter. Diese Art der Prognosemethode berücksichtigt nicht das historische Nachfrageverhalten, sondern nur die Nachfrage in der aktuellen Periode. Es reagiert direkt auf die normalen, zufälligen Bewegungen in der Nachfrage. Die einfache gleitende Durchschnittsmethode verwendet in der jüngsten Vergangenheit mehrere Bedarfswerte, um eine Prognose zu entwickeln. Dies neigt dazu, die zufälligen Zunahmen und Abnahmen einer Prognose, die nur eine Periode verwendet, zu dämpfen oder zu glätten. Die einfache gleitende Durchschnitt ist nützlich für die Prognose der Nachfrage, die stabil ist und zeigt keine ausgeprägte Nachfrage Verhalten, wie ein Trend-oder saisonale Muster. Bewegungsdurchschnitte werden für bestimmte Zeiträume berechnet, wie z. B. drei Monate oder fünf Monate, je nachdem, wie viel der Prognostiker wünscht, die Bedarfsdaten zu glätten. Je länger der gleitende Durchschnitt, desto glatter wird es sein. Die Formel für die Berechnung der einfachen gleitenden Durchschnitt ist Computing ein einfaches Moving Average Die Instant Paper Clip Office Supply Company verkauft und liefert Bürobedarf an Unternehmen, Schulen und Agenturen innerhalb eines 50-Meile Radius seines Lagers. Das Büro-Supply-Geschäft ist wettbewerbsfähig, und die Fähigkeit, Aufträge zeitnah zu liefern, ist ein Faktor, neue Kunden zu gewinnen und alte zu halten. (Büros in der Regel nicht, wenn sie auf niedrige Lieferungen laufen, aber wenn sie völlig ausgehen, so dass sie ihre Aufträge sofort benötigen.) Der Manager des Unternehmens will sicher sein, genug Fahrer und Fahrzeuge zur Verfügung stehen, um Aufträge umgehend zu liefern und Sie haben ausreichende Bestände auf Lager. Daher möchte der Manager die Anzahl der Aufträge prognostizieren, die während des nächsten Monats auftreten (d. h. die Nachfrage nach Lieferungen vorauszusagen). Aus den Aufzeichnungen der Zustellungsaufträge hat das Management die folgenden Daten für die letzten 10 Monate akkumuliert, aus denen er 3- und 5-Monats-Bewegungsdurchschnitte berechnen möchte. Nehmen wir an, daß es Ende Oktober ist. Die Prognose, die sich aus dem 3- oder 5-monatigen gleitenden Durchschnitt ergibt, liegt typischerweise für den nächsten Monat in der Sequenz, die in diesem Fall November ist. Der gleitende Durchschnitt wird aus der Nachfrage nach Aufträgen für die vorangegangenen 3 Monate in der Sequenz gemäß folgender Formel berechnet: Der gleitende 5-Monatsdurchschnitt wird aus den vorherigen 5 Monaten der Bedarfsdaten wie folgt berechnet: Der 3- und der 5-Monats-Zeitraum Gleitende Durchschnittsprognosen für alle Monate der Nachfragedaten sind in der folgenden Tabelle dargestellt. Eigentlich würde nur die Prognose für November, die auf der letzten monatlichen Nachfrage basiert, vom Manager verwendet werden. Allerdings erlauben es die früheren Prognosen für die Vormonate, die Prognose mit der tatsächlichen Nachfrage zu vergleichen, um zu sehen, wie genau die Prognosemethode ist - das heißt, wie gut es funktioniert. Drei - und Fünfmonatsdurchschnitte Beide gleitenden Durchschnittsprognosen in der obigen Tabelle neigen dazu, die Variabilität, die in den tatsächlichen Daten auftritt, zu glätten. Dieser Glättungseffekt ist in der folgenden Abbildung zu sehen, in der die 3-Monats - und die 5-Monats-Durchschnittswerte einem Diagramm der ursprünglichen Daten überlagert wurden: Der gleitende 5-Monatsdurchschnitt in der vorherigen Abbildung glättet Schwankungen in einem größeren Ausmaß als Der dreimonatige Gleitende Durchschnitt. Der 3-Monats-Durchschnitt spiegelt jedoch die jüngsten Daten, die dem Büromaterial-Manager zur Verfügung stehen, stärker wider. Im Allgemeinen sind die Prognosen, die den längerfristigen gleitenden Durchschnitt verwenden, langsamer, um auf die jüngsten Veränderungen in der Nachfrage zu reagieren als diejenigen, die unter Verwendung kürzerer Periodenbewegungsdurchschnitte durchgeführt wurden. Die zusätzlichen Datenperioden dämpfen die Geschwindigkeit, mit der die Prognose antwortet. Die Festlegung der geeigneten Anzahl von Perioden, die in einer gleitenden Durchschnittsprognose verwendet werden müssen, erfordert oft ein gewisses Maß an Versuchs - und Fehlerversuchen. Der Nachteil der gleitenden Durchschnittsmethode ist, dass sie nicht auf Variationen reagiert, die aus einem Grund auftreten, wie z. B. Zyklen und saisonale Effekte. Faktoren, die Änderungen verursachen, werden in der Regel ignoriert. Es handelt sich grundsätzlich um eine mechanische Methode, die historische Daten konsistent widerspiegelt. Die gleitende Durchschnittsmethode hat jedoch den Vorteil, einfach zu bedienen, schnell und relativ kostengünstig zu sein. In der Regel kann diese Methode eine gute Prognose für die kurze Laufzeit, aber es sollte nicht zu weit in die Zukunft geschoben werden. Gewichteter gleitender Durchschnitt Die gleitende Durchschnittsmethode kann so angepasst werden, dass sie stärkere Fluktuationen in den Daten widerspiegelt. Bei der gewichteten gleitenden Durchschnittsmethode werden die Gewichte den letzten Daten entsprechend der folgenden Formel zugewiesen: Die Bedarfsdaten für PM Computer Services (gezeigt in der Tabelle für Beispiel 10.3) scheinen einem zunehmenden linearen Trend zu folgen. Das Unternehmen möchte eine lineare Trendlinie berechnen, um zu sehen, ob es genauer als die in den Beispielen 10.3 und 10.4 entwickelten exponentiellen Glättungs - und angepassten exponentiellen Glättungsvorhersagen ist. Die für die Berechnung der kleinsten Quadrate benötigten Werte sind wie folgt: Unter Verwendung dieser Werte werden die Parameter für die lineare Trendlinie wie folgt berechnet: Daher wird die lineare Trendliniengleichung berechnet, um eine Prognose für die Periode 13 zu berechnen, wobei x & sub3; Trendlinie: Die folgende Grafik zeigt die lineare Trendlinie im Vergleich zu den Istdaten. Die Trendlinie scheint die tatsächlichen Daten genau zu reflektieren - also gut zu passen - und wäre somit ein gutes Prognosemodell für dieses Problem. Ein Nachteil der linearen Trendlinie besteht jedoch darin, dass sie sich nicht an eine Trendänderung anpasst, da die exponentiellen Glättungsprognosemethoden voraussetzen, dass alle zukünftigen Prognosen einer Geraden folgen werden. Dies beschränkt die Verwendung dieser Methode auf einen kürzeren Zeitrahmen, in dem Sie relativ sicher sein können, dass sich der Trend nicht ändert. Saisonale Anpassungen Ein saisonales Muster ist eine repetitive Zunahme und Abnahme der Nachfrage. Viele Nachfrageartikel zeigen saisonales Verhalten. Bekleidungsverkäufe folgen jährlichen Jahreszeitmustern, mit der Nachfrage nach warmer Kleidung, die im Fall und im Winter und im Frühjahr und Sommer abnimmt, während die Nachfrage nach kühlerer Kleidung zunimmt. Die Nachfrage nach vielen Einzelteilen einschließlich Spielwaren, Sportausrüstung, Kleidung, elektronische Geräte, Schinken, Truthähne, Wein und Frucht, während der Ferienzeit erhöhen. Grußkarte Nachfrage steigt in Verbindung mit besonderen Tagen wie Valentinstag und Muttertag. Saisonale Muster können auch auf einer monatlichen, wöchentlichen oder sogar täglichen Basis auftreten. Einige Restaurants haben höhere Nachfrage am Abend als am Mittag oder am Wochenende im Gegensatz zu Wochentagen. Verkehr - also Verkäufe - an den Einkaufszentren nimmt Freitag und Samstag auf. Es gibt mehrere Methoden, um saisonale Muster in einer Zeitreihenprognose zu reflektieren. Wir beschreiben eine der einfacheren Methoden mit einem saisonalen Faktor. Ein saisonaler Faktor ist ein numerischer Wert, der mit der normalen Prognose multipliziert wird, um eine saisonbereinigte Prognose zu erhalten. Eine Methode zur Entwicklung einer Nachfrage nach saisonalen Faktoren besteht darin, die Nachfrage pro Saison nach der folgenden Formel aufzuteilen: Die daraus resultierenden saisonalen Faktoren zwischen 0 und 1,0 sind tatsächlich der Anteil der Gesamtjahresnachfrage jede Saison. Diese saisonalen Faktoren werden mit der jährlichen prognostizierten Nachfrage multipliziert, um prognostizierte Prognosen für jede Saison zu erzielen. Berechnung einer Prognose mit saisonalen Anpassungen Wishbone Farms wächst Truthähne zu einem Fleisch-Verarbeitung Unternehmen das ganze Jahr verkaufen. Allerdings ist seine Hauptsaison offensichtlich im vierten Quartal des Jahres, von Oktober bis Dezember. Wishbone Farms hat in den folgenden drei Jahren die Nachfrage nach Truthühnern erlebt: Weil wir drei Jahre Nachfragedaten haben, können wir die saisonalen Faktoren berechnen, indem wir die gesamte vierteljährliche Nachfrage für die drei Jahre durch die Gesamtnachfrage in allen drei Jahren dividieren : Als nächstes wollen wir die prognostizierte Nachfrage für das nächste Jahr, 2000, mit jedem der saisonalen Faktoren multiplizieren, um die prognostizierte Nachfrage für jedes Quartal zu erhalten. Um dies zu erreichen, benötigen wir eine Nachfrageprognose für 2000. Da in diesem Fall die Nachfragedaten in der Tabelle einen allgemein ansteigenden Trend aufweisen, berechnen wir eine lineare Trendlinie für die drei Jahre der Daten in der Tabelle, um eine grobe zu erhalten Prognose Schätzung: So ist die Prognose für das Jahr 2000 58,17 oder 58,170 Puten. Anhand dieser jährlichen Bedarfsprognose werden die saisonbereinigten Prognosen SF i für das Jahr 2000 verglichen, wenn diese vierteljährlichen Prognosen mit den tatsächlichen Bedarfswerten in der Tabelle verglichen werden. Sie scheinen relativ gute Prognoseschätzungen zu sein, die sowohl die saisonalen Schwankungen der Daten widerspiegeln als auch Der allgemeine Aufwärtstrend. 10-12. Wie ist die gleitende Durchschnittsmethode ähnlich der exponentiellen Glättung 10-13. Welche Auswirkung auf das exponentielle Glättungsmodell wird die Glättungskonstante erhöhen, haben 10-14. Wie sich die eingestellte exponentielle Glättung von der exponentiellen Glättung 10-15 unterscheidet. Was die Wahl der Glättungskonstante für den Trend in einem angepassten exponentiellen Glättungsmodell 10-16 bestimmt. In den Kapitelbeispielen für Zeitreihenmethoden wurde die Ausgangsprognose immer als die tatsächliche Nachfrage in der ersten Periode angenommen. Schlagen Sie weitere Möglichkeiten vor, dass die Startprognose tatsächlich ermittelt werden kann. 10-17. Wie unterscheidet sich das lineare Trendlinien-Prognosemodell von einem linearen Regressionsmodell für die Prognose 10-18. Von den in diesem Kapitel vorgestellten Zeitreihenmodellen, einschließlich dem gleitenden Mittelwert und dem gewichteten gleitenden Durchschnitt, der exponentiellen Glättung und der angepassten exponentiellen Glättung und der linearen Trendlinie, welche halten Sie für den besten Warum 10-19. Welche Vorteile hat eine angepasste exponentielle Glättung über eine lineare Trendlinie für die prognostizierte Nachfrage, die einen Trend aufweist 4 K. B. Kahn und J. T. Mentzer, Prognose in Consumer and Industrial Markets, The Journal of Business Forecasting 14, No. 2 (Sommer 1995): 21 & ndash; 28.
No comments:
Post a Comment